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Abstract Altmetric Attention Score (AAS) is an increasingly popular composite altmetric

measure, which is being criticized for an inappropriate and arbitrary aggregation of dif-

ferent altmetric sources into a single measure. We examined this issue empirically, by

testing unidimensionality and the component structure congruence of the five ‘key’ AAS

components: News, Blogs, Twitter, Facebook, and Google?. As a reference point, these

tests were also done on different citation data: WoS, Scopus, and Google Scholar. All tests

were done for groups of articles with: (1) high citations, but lower AAS (HCGs), and (2)

high AAS, but lower citations (HAGs). Changes in component structures over time (from

2016 to 2017) were also considered. Citation data consistently formed congruent unidi-

mensional structures for all groups and over time. Altmetric data formed congruent uni-

dimensional structures only for the HCGs, with much inconsistency for the HAGs

(including change over time). The relationship between Twitter and News counts was

shown to be curvilinear. It was not possible to obtain a satisfactory congruent and reliable

linear unidimensional altmetric structure between the groups for any variable combination,

even after Mendeley and CiteULike altmetric counts were included. Correlations of alt-

metric aggregates and citations were fairly inconsistent between the groups. We advise

against the usage of composite altmetric measures (including the AAS) for any group

comparison purposes, until the measurement invariance issues are dealt with. The
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underlying pattern of associations between individual altmetrics is likely too complex and

inconsistent across conditions to justify them being simply aggregated into a single score.

Keywords Altmetrics � Altmetric Attention Score (AAS) � Citations � Measurement

invariance � Measurement congruence

Introduction

Emergence of the Web 2.0 (O’Reilly 2005) brought upon an array of innovations,

including a massive rise of social media, which also has had a major (and increasing)

influence on scholarly communication practices. Scientific research can now be shared,

(re)viewed, liked, blogged, tweeted, etc., in a very fast and global way via online plat-

forms, reaching an audience that potentially expands well beyond the formal academic

circles. This has opened a possibility of using such online activities as a proxy for mea-

suring the broader impact of scientific research (Galligan and Dyas-Correia 2013). A term

‘altmetrics’ has been proposed as a collective name for the data related to the presence of

scientific output in social web tools, such as Facebook, Twitter, blogs, news media, online

reference management tools, etc. (Priem et al. 2010). Note, however, that some authors

have argued against this term. For example, Ronald and Fred (2013) have instead proposed

the terms ‘influmetrics’ and ‘web-based social influmetrics’. Others did not object to the

‘altmetrics’ name specifically, but did point out to the necessity of distinguishing it from

the slightly older concept of ‘usage metrics’ (Glänzel and Gorraiz 2015). Usage metrics,

such as views and downloads (Gorraiz et al. 2014; Wang et al. 2016), and similarly, a count

of times an article was mentioned on the internet (i.e., ‘web citations’) (Kousha and

Thelwall 2007; Vaughan and Shaw 2005) were also considered as ‘alternative’ proxies for

scientific impact before the ‘actual’ altmetrics. Regardless, ‘altmetrics’ currently seems to

be the most widely accepted term when referring to scientific output in social web tools

(e.g., Bornmann 2014, 2015; Erdt et al. 2016; Galligan and Dyas-Correia 2013; Glänzel

and Gorraiz 2015; Haustein et al. 2014; Ortega 2015; Priem et al. 2010; Sud and Thelwall

2014; Thelwall et al. 2013; Wouters and Costas 2012).

It has been suggested that both usage metrics and altmetrics are useful frameworks for

gaining ‘‘a much broader and more complete picture of scientific communication’’

(Glänzel and Gorraiz 2015, p. 2163). This, however, is arguably even more true for

altmetrics than it is for usage metrics. There also appears to be a slight shift in research

focus from web citations and usage statistics towards altmetrics (Bornmann 2014). Usage

metrics have been around for a longer time than altmetrics and their relationship with the

traditional bibliometric scientific impact metrics (i.e., citation counts) has been thoroughly

studied, with correlations being generally high or moderate to high (Gorraiz et al. 2014,

Kousha and Thelwall 2007; Vaughan and Shaw 2005; Wang et al. 2016). This implies that

usage metrics and citation counts still measure a common impact core and point to the

same or similar conclusions.

Conversely, correlations between altmetrics and citations appear to be lower, ranging

from negligible values to about .50 on a high end. Specifically, Bornmann (2015) con-

ducted a meta-analysis on the topic of association of altmetrics with traditional citations,

obtaining pooled citations—microblogging (i.e., Twitter) correlation of .003, citations—

blogging correlation of .12, with somewhat higher correlations for online reference man-

agers, i.e., .23 for citations—CiteULike and .51 for citations—Mendeley. He concluded

that ‘‘the more a social media community is dominated by people focussing on research,
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the higher the correlation between the corresponding altmetric and traditional citations is’’

(p. 1140), with the remark that ‘‘[l]ow correlations point to altmetrics which might be of

special interest for the broad impact measurement of research, i.e. impact on other areas of

society than science’’ (p. 1140).

While promising, research on altmetrics is still very preliminary and incomplete, and

mostly focuses on associations with the traditional citation metrics, which is the first,

necessary, but an insufficient research step (Bornmann 2015; Sud and Thelwall 2014). We

are at the point where correlations of citations with the most popular altmetrics have

already been fairly well established. This has led some prominent authors (e.g., Bornmann

2015) to argue that researchers should now focus on more in-depth studies which would

examine who actually uses research/articles outside academia and for which purposes. This

is especially important given the fact that it is not yet particularly clear which kind of a

broader impact a given altmetric taps into the most (Sud and Thelwall 2014). For example,

is it social, cultural, environmental, economic, etc. (Bornmann 2014), or do altmetrics have

more to do with networking abilities and science popularization (Ortega 2015), or some-

thing else entirely?

Current research background

There are still several obstacles and technical issues related to altmetrics research

(Bornmann 2014). This includes a commercial bias concern (i.e., social media providers

have a financial interest in promoting as much communication through their portal/tool as

possible) and a susceptibility towards manipulation (i.e., it is easy to generate high ‘fake’

altmetric counts). Furthermore, while altmetric data is arguably readily available, there are

many data quality related issues, such as obtaining sufficient information about user

groups, deciding on proper normalizations, ensuring stable replicability, etc. (Bornmann

2014; Erdt et al. 2016).

Luckily, all these issues are mostly technical in nature and it is currently ‘an open

season’ for the development of the best altmetric framework, which would hopefully solve

all the major problems. One of the arguably most popular emerging frameworks is the

Altmetric.com project (Adie and Roe 2013), which is a form of the primary altmetric

aggregator (Erdt et al. 2016). It is a commercial website and service that tracks, analyses,

and collects an ongoing online activity around published research outputs from a large

selection of online sources such as blogs, Twitter, Facebook, Google?, mainstream news

outlets, media, and other sources. They show the data both individually and in a form of the

automatically calculated ‘Altmetric Attention Score’ (AAS), which is intended to reflect

both a quantity (higher attention means higher score) and a quality (weighting per different

sources) of attention a research output has received. The AAS is a composite measure

comprised of more than a dozen individual altmetric data sources, including Twitter,

Facebook, Google?, and so on (see: https://goo.gl/E2M05n).

The AAS is based on three main factors (see: https://goo.gl/24o7fJ): (1) Volume—AAS

raises as more people mention an article, but only one mention from each person per source

is taken into consideration (which is intended as a form of built-in protection against

manipulation). (2) Sources—categories of the mentions are weighted differently (see:

https://goo.gl/E2M05n), e.g., a newspaper article mention has a higher weight than a blog

post, which has a higher weight than a tweet. (3) Authors—who wrote the mention and to

whom (i.e., who is the audience) is also taken into consideration, controlling for a potential

bias towards a journal or a publisher. As the same source states, if a doctor shares a link

with other doctors that is weighted more than an automated share from a journal account.
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The AAS is becoming increasingly present in research communication channels

(Gumpenberger et al. 2016), likely due to its very intuitive nature and a convenience factor.

There are, however, several criticisms of the AAS (Gumpenberger et al. 2016). One of the

major concerns is the mere fact that AAS is a single composite measure, which arguably

simplifies the multidimensional nature of the data it contains (Gumpenberger et al. 2016).

As Gumpenberger et al. (2016) point out, a single score might be convenient, but there is a

danger of the AAS being misused, just like the journal impact factor, e.g., it might soon be

used as a basis for ranking individuals, institutions, or even countries. Directly related to

this is a criticism of the AAS’ content being chosen somewhat arbitrarily. For example,

AAS does not include reference managers such Mendeley or CiteULike, because, as

Altmetric.com’s explanation states (see: https://goo.gl/E2M05n), full details of who is

making a mention cannot be shown for these sources, which conflicts with the stated idea

behind the AAS—that everything included in the score must be fully transparent and

visible. Gumpenberger et al. (2016), however, suggest that reference managers reflect

captures and that it is a mistake to exclude them, as they are an important source of

information regarding a level of online activity surrounding a given research output, which

is, in fact, the intended goal of the AAS. They also point out that data on which the AAS is

based on is not normalized or standardized in any way, that rounding AAS scores to

integers is a mistake, and that the relative importance (i.e., statistical weights) of the parts

from which the AAS is comprised of are determined using arbitrary criteria instead of valid

scientific principles. Some concerns regarding a proprietary nature of the AAS and data

validity were also raised (Gumpenberger et al. 2016).

On one hand, nobody is denying the fact that AAS has obviously been a huge com-

mercial success (Gumpenberger et al. 2016). It is probably not going anywhere any time

soon and it might very well become ‘one altmetric to rule them all’. It seems very likely

that AAS will also become increasingly popular for research purposes. It has already been

established that the AAS is correlated around .30 with citations on an article level, and

around .61 on a journal level (for Economics and Business Studies journals; Nuredini and

Peters 2016). On the other hand, Gumpenberger et al. (2016) have raised several important

criticisms of the AAS that should, in fact, be addressed if the AAS is to be considered as a

valid overall representation of the ‘altmetric impact,’ and if it is to be used responsibly,

productively, or even used at all.

Research problem

Gumpenberger et al. (2016) voiced their concerns about the AAS based on conceptual

considerations. We are interested in approaching the issues from a data driven point of

view, by testing if it is empirically justifiable to aggregate individual altmetrics into a

single composite measure, as the AAS does, and by testing if such an aggregate/composite

is suitable for group comparison purposes. Specifically, we intend to examine: (1) Can the

AAS elements, i.e., altmetrics that the AAS is comprised from, be conceptualized as a

meaningful unidimensional measure? (2) Are the AAS elements related to each other in a

similar way, i.e., do they form a similar structure across different conditions? The reason

why this is important is because if we are to compare any groups, experimental conditions,

etc., using any kind of test or measure, that particular test or measure must have the same

general meaning for every group or condition that is being compared. In other words, there

is a necessary assumption that a measure on which comparisons are being made is on the

same measurement level, i.e., that there is so called measurement invariance/equivalence

across the compared groups (Drasgow 1984).
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Many of the key concepts regarding measurement invariance originate from a field of

psychology (e.g., Drasgow 1984; Meredith 1993; Reise et al. 1993), but the general idea

holds true for any kind of comparative measurement and expands beyond psychology, as it

basically addresses ‘comparing apples to oranges’ problem. One of the proposed defini-

tions of measurement invariance/equivalence states that: ‘‘Equivalent measurement is

obtained when the relations between observed test scores and the latent attribute measured

by the test are identical across subpopulations.’’ (Drasgow 1984, p. 134). If a measurement

invariance does not hold, ‘‘then differences between groups in mean levels or in the pattern

of correlations of the test with external variables are potentially artifactual and may be

substantively misleading’’ (Reise et al. 1993, p. 552). For group comparisons to be sound,

structures of latent factors or components for a given composite measure should be at least

partially equivalent between the groups. On the most basic level, this means that at least

factor/component loadings of the measure/test/etc. should be similar between compared

conditions (Meredith 1993). One simple way of testing this empirically is to determine a

‘congruence’ of loadings for a given measure’s factor or component between two (or more)

conditions. A congruence is, essentially, a standardized measure of proportionality of

elements (i.e., loadings) between vectors (i.e., factors or components) (Lorenzo-Seva and

Ten Berge 2006).

To test if the AAS is indeed functionally unidimensional and minimally measurement

invariant, i.e., congruent, we will compare its structure between groups of two different

types of articles: (1) articles that are highly cited and have some, but not necessarily a very

high altmetrics presence, and (2) articles that have high AAS and are cited, but not

necessarily highly. Furthermore, we will also examine if the AAS is congruent across

different times, i.e., does its structure remain functionally equivalent one year after an

initial measurement. As an illustrative point of a direct comparison, we will also examine

unidimensionality and congruence for a composite of ‘traditional’ citation measures

derived from different sources, between the same groups that we will use to test the AAS

on. We will also examine how altmetric and citation measures interrelate, and how these

correlations vary between the groups. If we obtain unidimensional and congruent altmetric

composite structures between different groups, that would not negate the criticisms of

Gumpenberger et al. (2016), but it would at least provide a certain level of empirical

support for the concept of AAS. Conversely, unfavorable results (i.e., low congruence,

violated and/or not reliable unidimensionality) would point to the necessity for the AAS to

be reconsidered.

Methods

Data and procedure

Data gathering was done in two phases. Data for phase one was collected in mid July 2016.

In this phase, two groups of articles were selected, initially comprised of 100 articles each:

(1) articles with generally high citation counts (i.e., ‘highly cited group’, HCG), and (2)

articles with generally high ‘Altmetric Attention Score’ (i.e., ‘high AAS group’, HAG).

Articles for the HCG were selected from both Web of Science (WoS) and Scopus

databases. When choosing articles, we opted to rely on a combination of WoS and Scopus

in order to obtain a more diverse selection of highly cited articles and their citation counts,

according to each of these databases, since their coverages are somewhat different
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(Mongeon and Paul-Hus 2016). A selection process was conducted manually, using BRICS

and G8 country names as arbitrary starting search terms. Only articles published in 2015

were considered, and first-appearing unique records from each database were included,

until a desired number of articles was reached. We included 2015 articles with 2016 data in

order to give selected articles enough time to receive citations.

Articles for the HAG were obtained from the pre-existing, publicly available Altmet-

ric.com selection called ‘The Altmetric Top 100’. We used a list from 2015 (see: https://

goo.gl/dH2Rsl). Altmetric.com provides lists of the top 100 articles as per the AAS, for

each year, starting from 2013.

There was a small overlap between the two article groups, as three articles from the

HAG also appeared amongst the selected HCG. These articles were removed from both

groups, reducing the number of articles to 97 per group. Furthermore, we removed seven

articles from the HCG, since they had no altmetric records according to the available

Altmetric.com data, i.e., they had no AAS at that time. Thus, the final number of articles in

the HCG was 90, with 97 articles in the HAG.

We counted WoS, Scopus, and Google Scholar citations for each article, in both groups.

Note that all the articles from the high AAS group had indexed citations according to at

least one of the three citation sources. Furthermore, the AAS and all the individual alt-

metrics from which the score is comprised of (see: https://goo.gl/E2M05n) were gathered,

relying upon publicly available Altmetric.com data. Due to very low or (almost) non-

existent frequencies of several altmetric indices included in the AAS calculation (e.g.,

Wikipedia mentions, policy documents, etc.), especially in the HCG, only the following

five altmetrics, with the most frequent counts (across these groups), were used in the

analyses, in addition to the AAS itself: News, Blogs, Twitter, Facebook, and Google?. As

most frequent, these altmetrics can arguably be seen as the ‘key elements’ of the AAS and

should be sufficient enough to test a similarity of the AAS configuration for the two

conditions (HCG vs. HAG). For the purpose of extended analyses, we also gathered

Mendeley and CiteULike counts, which are not used in the calculation of the AAS (see:

https://goo.gl/E2M05n), but their counts are nevertheless available from Altmetric.com.

In phase two, which was conducted in mid July 2017, we gathered updated altmetric and

citation counts for the two article groups selected in phase one, using the same sources as

previously described. Several HCG articles, which were previously removed due to the

lack of altmetric counts, now had Altmetric.com entries, but we opted not to include them

in the update, in order to be able to make direct comparisons between phase one and phase

two data. In this phase, we also gathered altmetric and citation counts for an additional

HAG and HCG, comprised of articles published in 2016. For the additional HAG, we used

‘The Altmetric Top 100’ articles for the year 2016 (see: https://goo.gl/8jtppD). For the

additional HCG, we selected another collection of highly cited articles, using the same

procedure as in phase one.

For 2015 articles, we refer to the data gathered in July 2016, i.e., phase one, as

HCG2015_ph1 and HAG2015_ph1, for highly cited and high AAS groups, respectively. We

refer to the data obtained for these groups in phase two, i.e., July 2017, as HCG2015_ph2 and

HAG2015_ph2, respectively. We refer to the data obtained in July 2017 for 2016 high AAS

group as HAG2016, while 2016 highly cited group was named HCG2016. This is summa-

rized in Table 1.
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Unidimensionality and measurement invariance testing procedure

There are many ways to examine if a composite measure is essentially/functionally uni-

dimensional (e.g., Ferrando and Lorenzo-Seva 2017) or measurement invariant (e.g.,

Meredith 1993; Reise et al. 1993), but we opted to rely on the simplest and least restrictive

tests and conditions available, all of which are based on a principal component analysis

(PCA). PCA is a statistical technique used to summarize patterns of correlations among a

set of observed variables, by reducing them to a smaller number of coherent subsets of

variables, which are called (principal) components and represent linear combinations (i.e.,

vectors) formed from the observed variables (Tabachnick and Fidell 2013). PCA is similar

to the exploratory factor analysis (EFA), but it is arguably less restrictive than the latter, as

it uses all of the observed variables’ variance, instead of only a shared variance as the EFA

does (Tabachnick and Fidell 2013). If various altmetrics do, in fact, form a unidimensional

structure, as the AAS implies, then this should be reproducible by PCA via extraction of a

single principal component. Note that the AAS itself is functionally a component, as it is a

linear combination of a handful of observed variables, i.e., individual altmetric indices.

PCAs were based on log-transformed values of the variables and conducted in the FAC-

TOR program (Lorenzo-Seva and Ferrando 2006, 2013). Other analyses were done in R (R

Development Core Team 2005) or manually.

Given a proposed unidimensionality of the AAS, one component was extracted by

default for each of the considered article groups. However, two procedures, namely Horn’s

parallel analysis (PA; Horn 1965) and Velicer’s minimum average partial test (MAP;

Velicer 1976) were also consulted in order to double check the justification of a single

component extraction, as both of them are commonly used to assess the optimal number of

components to retain in the PCA (e.g., Subotić 2013; Zwick and Velicer 1986). As a

necessary and the most important condition when evaluating unidimensionality, we expect

that tested altmetrics should have a minimal required loading in all conditions/groups, i.e.,

correlation of variables with their principal component should be at least .30, which is

typically the lowest used conventional threshold (other common lower bound values are

.32 or .40; e.g., Grice 2001; Tabachnick and Fidell 2013). Taking into consideration that

the AAS is calculated by the addition of the altmetric values (after they are weighted, but

Table 1 Article groups summary

Article groups

HCG2015_ph1 HCG2015_ph2 HAG2015_ph1 HAG2015_ph2 HAG2016 HCG2016

Number of articles 90 90 97 97 100 100

Year of articles’
publication

2015 2015 2015 2015 2016 2016

Date of data
collection

Mid-July
2016

Mid-July
2016

Mid-July
2017

Mid-July
2017

Mid-July
2017

Mid-July
2017

Phases of data
collection

One Two One Two Two Two

HCG2015_ph1 = highly cited group from 2015, based on data from 2016. HCG2015_ph2 = highly cited group
from 2015, based on data from 2017. HAG2015_ph1 = high AAS group from 2015, based on data from 2016.
HAG2015_ph2 = high AAS group from 2015, based on data from 2017. HCG2015_ph1 is comprised of the
same articles as HCG2015_ph2. HAG2015_ph1 is comprised of the same articles as HAG2015_ph2
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not recoded), it is inherently assumed that the relationship between them is positive. Thus,

we also expect a direction of all component loadings’ signs to be positive. Finally, we took

into consideration a degree to which the components reliably measure the same construct,

i.e., how internally consistent they are. For this purpose, we relied on a McDonald’s x
coefficient (McDonald 1999; Zinbarg et al. 2005). As a general rule of a thumb, internal

consistency values should ideally be around .90 and should not fall below .70 (e.g., Kline

2010).

There are several ways and stages of assessing measurement invariance of a composite

measure, and there are several levels of measurement invariance itself (e.g., Chen 2007;

Meredith 1993; Lorenzo-Seva and Ten Berge 2006; Reise et al. 1993; Vandenberg and

Lance 2000; Wu et al. 2007). Assuming that the unidimensionality holds, the most fun-

damental step in invariance testing is to establish an equivalence of loadings between the

compared groups and one of the easiest (and arguably best) ways of doing so is to

determine a level of factor/component congruence between groups. The most popular way

of doing so, which we opted to use as well, is via the Tucker’s congruence coefficient—/
(Tucker 1951), which is obtained by calculating a cosine of the angle between the fac-

tors/components (Lorenzo-Seva and Ten Berge 2006). If we assume two vectors (factors or

components), the Tucker’s congruence coefficient is calculated as

/ x; yð Þ ¼
P

xiyi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2
i

P
y2
i

p

where xi and yi are factor/component loadings of variable i on factors x and y, respectively

(Tucker 1951; Lorenzo-Seva and Ten Berge 2006). The value of / in the range between

.85 and .94 implies a fair similarity between two factors or components, a value higher than

.95 implies that they can be considered equal, while a value of .84 and lower means that

factors or components should be treated as structurally different (Lorenzo-Seva and Ten

Berge 2006).

Results

Findings are presented in stages, beginning with the comparisons between article groups in

mean values of the AAS and citations, followed by the unidimensionality tests, congruence

tests, and finishing with the correlation analyses between the composite altmetric scores

and citations. We also included several non-planned tests, to answer specific questions

raised by the results themselves. One of these is a linearity test for two variables that

showed inconsistent loadings between different conditions. The second one is a set of

additional PCAs, conducted on subset of positively and negatively loaded variables. The

third one is an ad hoc exploratory attempt to obtain a congruent component configuration,

by including additional altmetric indices.

Difference between groups comparing the AAS values and citations

We first established that every HAG had significantly higher AAS values than every HCG

(all ps\ .001) and that every HCG had significantly higher mean citation counts1 than

1 Note that we expressed mean citations as a log-transformed average of WoS, Scopus, and Google Scholar
citation counts. Using combined citations was justified given the high unidimensionality and congruence of
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every HAG (all ps\ .001). All these effects were of a high magnitude, with Cohen’s ds

ranging from 1.66 to 3.14 for the log-transformed mean AAS and from 1.53 to 3.27 for the

log-transformed mean citations (Cohen 1992). Expressed using so called common lan-

guage effect statistics—CL (Dunlap 1994; McGraw and Wong 1992), it can be stated that

there is a probability between 88.02 and 98.69% that any randomly selected article from

the HAGs will have a higher AAS than any randomly selected article from the HCGs.

Conversely, there is a probability between 86.04% and 98.96% that any randomly selected

article from the HCGs will have a higher mean citation score than any randomly selected

article from the HAGs.

The changes in AAS and mean citations over time, i.e., from phase one to phase two, are

shown in Table 2. While 2016 and 2017 counts were highly correlated, all the values

showed a significant increase from mid-2016 (HCG2015_ph1 and HAG2015_ph1 counts) to

mid-2017 (HCG2015_ph2 and HAG2015_ph2 counts), except the AAS score for the

HCG2015_ph1 versus HCG2015_ph2 comparison, for which the increase over time was non-

significant and trivial (Cohen 1992). Increases in mean citations were high in both groups,

while the increase over time in the AAS from HAG2015_ph1 to HAG2015_ph2 was of a

moderate intensity (Cohen 1992).

Unidimensionality tests

We conducted seven separate PCAs, for all six HCGs and HAGs and also for the combined

data of four non-repeated groups (i.e., everything except HCG2015_ph2 and HAG2015_ph2).

The five most frequent altmetric indicators used in the calculation of the AAS were used as

observed variables. A single principal component was extracted for every group by default,

but in order to assess and verify unidimensionality, Horn’s PA (1965) and Velicer’s MAP

(1976) test results were taken into consideration. Component loadings were expected to be

positive and no less than .30 (Grice 2001). Internal consistency reliability (McDonald’s x;

McDonald 1999; Zinbarg et al. 2005) of at least .70 and ideally around .90 was also

expected. In addition, we also calculated the percentages of variance accounted for by the

components (in order to assess how much information is lost due to aggregation into a

single component) and the correlations of component scores with the corresponding ‘raw’

AAS values. The results are shown in Table 3.

For all three highly cited groups/conditions (i.e., HCG2015_ph1, HCG2015_ph2, and

HCG2016), as well as for the combined data, unidimensionality assumptions are met. Both

MAP and PA suggest that it is optimal to retain one component. All loadings are positive

and above the minimal .30 threshold, with internal consistencies being around the upper

threshold of .90, meaning that all five altmetric variables are strongly and reliably repre-

sented on the principal components for these groups. Furthermore, components explain

fairly large percentages of the variables’ variance and all of the correlations of component

scores with the corresponding ‘raw’ AAS values are high (Cohen 1992).

When it comes to the high AAS groups (i.e., HAG2015_ph1, HAG2015_ph2, and HAG2016),

unidimensionality is generally not supported, especially for the HAG2015_ph1. With the

exception of HAG2015_ph2, several loadings in the other two HAGs are below the .30

threshold and/or are negative. MAP and PA do not conclusively suggest a single com-

ponent to be the most optimal solution in these three groups. Internal consistencies are low

Footnote 1 continued
citation data from these sources, as shown in the Unidimensionality and congruence tests section of the
Results. The log-transformation was used to account for highly non-normal distributions.
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in two out of three groups. Percentages of explained variance were also low (below 50%)

for all three HAGs, suggesting a substantial loss of information due to aggregation into a

single component.

High negative loading of the Twitter variable in HAG2015_ph1 is mainly due to the

inverse bivariate correlation of Twitter and News counts (rlog-transformed = - .51, p\ .001;

q = - .45, p\ .001). Negative loading of News counts in HAG2016 (albeit below the .30

threshold) is also a result of an inverse correlation with Twitter (rlog-transformed = -

q = - .34, p\ .001). Twitter—News correlation does seem to ‘stabilize’ to generally

high (Cohen 1992) positive values on the combined sample (r
log-transformed

= .70, p\ .001;

q = .59, p\ .001), with both variables having positive component loadings (correlations

in HCGs are also positive). However, a deeper investigation into the relationship between

these variables (see Fig. 1) reveals that there is an evidence of their association being

curvilinear, most likely cubic (increases in explained variance of quadratic model over

linear model and cubic model over quadratic model are both statistically significant:

Dp = .004, and Dp\ .001, respectively. A curvilinear relationship between Twitter and

News does explain why there is such an inconsistency in correlations and loading of these

variables across the groups. Note that for individual groups there was no strong indication

of the non-linear relationship between Twitter and News in HCGs, but with obvious signs

of curvilinearity for individual HAGs.

All three HAGs’ components explain much lower percentages of the observed vari-

ables’ variance in comparison to the HCGs or the combined data. Their correlations with

the corresponding AAS values are also lower than those of the HCGs and the combined

data, i.e., correlation is low and nonsignificant for the HAG2015_ph1, moderate for the

HAG2016, and high only for the HAG2015_ph2 (Cohen 1992). Note that reversing the sign of

variables with negative loadings before the PCAs are conducted would not have changed

the percentages of the explained variance or the correlations with the ‘raw’ AAS. However,

given that internal consistency is dependent on the directions of the variables, we did

explore what would happen if empirically observed signs were ignored, and all the values

were instead treated as positive, as the AAS implicitly assumes. Doing so resulted in only a

slight increase or no increase (within a rounding error) of the HAGs’ internal consistencies.

Given that the HAG2015_ph1 is obviously displaying the highest departure from unidi-

mensionality, we conducted two additional ad hoc PCAs, one on only positively loaded

Table 2 Differences between phase one and phase two AAS and mean citations

Comparisons t df pt d CL (%) r q

AAS HCG2015_ph1 = HCG2015_ph2 - 1.70 89 .093 0.18 55.04 .97 .98

HAG2015_ph1\HAG2015_ph2 - 5.86 96 \ .001 0.59 66.30 .72 .83

Mean citations HCG2015_ph1\HCG2015_ph2 - 24.00 89 \ .001 2.52 96.32 .91 .94

HAG2015_ph1\HAG2015_ph2 - 21.97 96 \ .001 2.20 94.18 .97 .93

HCG2015_ph1 = highly cited group from 2015, based on data from 2016. HCG2015_ph2 = highly cited group
from 2015, based on data from 2017. HAG2015_ph1 = high AAS group from 2015, based on data from 2016.
HAG2015_ph2 = high AAS group from 2015, based on data from 2017. Mean citations are average of WoS,
Scopus, and Google Scholar counts. t-statistics were calculated on log-transformed variables. d = Cohen’s
measure of effect size (Cohen 1992). CL = common language effect statistics (Dunlap 1994; McGraw and
Wong 1992). r = Pearson’s product-moment correlation of phase one and phase two log-transformed data.
q = Spearman’s rank correlation of phase one and phase two untransformed data. All ps for r and q
are\ .001
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items (News and Blogs), and the other on only negatively loaded items (Twitter, Facebook,

and Google?). In the first case, loadings were .887 and .887, respectively, with 78.62% of

variance explained. In the second case, loadings were .768, .380, and .746, respectively,

with 43.05% of variance explained. These two (sub)components’ scores correlated nega-

tively with each other (r = - .22, p = .03; q = - .20, p = .05), but their individual

correlations with the AAS: q = .46, p\ .001, and q = .48, p\ .001, respectively, were

higher than the value of q = .10, which was originally obtained when they were combined

into a single HAG2015_ph1 altmetric component.

As a point of comparison, we also conducted PCAs for three (log-transformed) citation

counts: WoS, Scopus, and Google Scholar. PCAs were again conducted for the six article

groups, plus the combined data. This is shown in Table 4. For all groups, including the

combined data, principal components account for large percentages of variance, while also

having generally good internal consistencies. All loadings are positive, and well above the

.30 threshold, with MAP and PA both suggesting that one component is optimal for all the

groups. Thus, it can be concluded that unidimensionality for citation data is fully supported

in all examined groups.

Congruence tests

The similarity of the components is shown in Table 5. Reported are the values of Tucker’s

congruence coefficients—/ (Tucker 1951; Lorenzo-Seva and Ten Berge 2006) for every

pair of the examined groups’ components. For an easier comparison, we reported / values

of the components calculated on altmetric indicators (loadings from Table 3) and on

citation counts (loadings from Table 4) in the same table. Congruences of the altmetric’s

Fig. 1 Linear (R2 = .487, Radjusted
2 = .486, F(1, 385) = 365.49, p\ .001), quadratic (R2 = .498,

Radjusted
2 = .495, F(2, 384) = 190.44, p\ .001), and cubic (R2 = .539, Radjusted

2 = .536, F(3,
383) = 149.41, p\ .001) fitting curve of the relationship between Twitter and News counts (based on
log-transformed data)
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data components are shown below the diagonal and congruences of the citation’s data

components are shown above the diagonal. It is obvious that congruences for the alt-

metric’s data components are very inconsistent, with 11 out of 21 values being below the

critical value of .85, which means that in more than half of the pairs, compared altmetric

components are, in fact, structurally different. Note, however, that components for alt-

metric indicators are fully congruent for the HCGs, as all the / values are well above the

upper threshold of .95. Thus, these components can be regarded as functionally equal. This

includes the equivalence over time for the altmetric data gathered in 2016 and 2017, for the

same group of highly cited articles from 2015 (i.e., HCG2015_ph1 vs. HCG2015_ph2 com-

parison). This also includes a full equivalence of every HCGs’ components with the

combined altmetric’s data component. Conversely, none of the altmetric’s data compo-

nents are congruent between themselves, including the lack of congruence over time for

the altmetric data gathered in 2016 and 2017, for the same group of high AAS articles from

2015 (i.e., HAG2015_ph1 vs. HAG2015_ph2 comparison). All four cases in which altmetric’s

data components do show congruence include HAG2015_ph2, whose component is con-

gruent with HCGs’ components and with the combined data component. If we were to

remove negative signs from all loadings, then 10 additional component pairs (which

include HAGs’ components) would become somewhat congruent (i.e., they would be in the

.85 to .94 range, which implies fair similarity), leaving only HAG2015_ph1 vs. HAG2016 to

remain incongruent.

Congruence values of all the citation’s data components are well above the .95 cutoff,

meaning that all the citation’s components for either HCGs or HAGs are structurally

equivalent, exhibiting much stronger similarity in comparison to the altmetric’s data

components.

Note that before the AAS calculation, Altmetric.com weights the altmetric variables

according to arbitrarily predefined criteria (Gumpenberger et al. 2016). Thus, we also

considered PCAs and corresponding congruence coefficients in which (prior to log-

Table 5 Congruence coefficients

Comparison
pairs

HCG2015_ph1 HCG2015_ph2 HAG2015_ph1 HAG2015_ph2 HCG2016 HAG2016 Comb.

HCG2015_ph1 – 1.00 .99 .99 .99 1.00 1.00

HCG2015_ph2 1.00 – .99 .99 .99 1.00 1.00

HAG2015_ph1 .18/.88 .18/.89 – 1.00 1.00 1.00 1.00

HAG2015_ph2 .96 .97 .36/.92 – 1.00 .99 1.00

HCG2016 1.00 1.00 .16/.87 .96 – 1.00 1.00

HAG2016 .79/.94 .79/.94 - .34/.73 .70/.87 .81/.95 – 1.00

Comb. 1.00 1.00 .17/.87 .97 1.00 .81/.95 –

HCG2015_ph1 = highly cited group from 2015, based on data from 2016. HCG2015_ph2 = highly cited group
from 2015, based on data from 2017. HAG2015_ph1 = high AAS group from 2015, based on data from 2016.
HAG2015_ph2 = high AAS group from 2015, based on data from 2017. HCG2016 = highly cited group from
2016, based on data from 2017. HAG2016 = high AAS group from 2016, based on data from 2017.
Comb. = Combined data (N = 387 articles) for the non-repeated groups: HCG2015_ph1 ?
HAG2015_ph1 ? HCG2016 ? HAG2016. Values below diagonal are congruence coefficients for the altmetric
variables PCAs (as shown in Table 3). Values above the diagonal are congruence coefficients for the citation
variables PCAs (as shown in Table 4). When two values are reported, the first one is calculated for loadings
as is (the first number) and with all loadings converted to positive values (the second number)
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transformation) the variables were weighted according to a default Altmetric.com criteria

(described at: https://goo.gl/E2M05n). While the obtained numerical values were not

identical, they pointed to the same conclusion that was derived from the reported

unweighted values, thus we do not report the results based on weighted values, due to their

redundancy.

Ad hoc question: can a congruent altmetric combination be achieved?

Given the results of fairly incongruent structures of the altmetric’s data components, we

also wanted to explore if it is actually possible to obtain any combination of altmetric

variables which would be congruent on our data, for all the groups. Since ‘Blogs’ was the

only altmetric variable which had a positive sign and a loading above .30 in the initial

analysis for all the groups (see Table 3), we decided to expand the variable selection by

including Mendeley and CiteULike altmetric counts, even though they are not actually

parts of the AAS (but there are arguments that they should be; see, e.g., Gumpenberger

et al. 2016). After this, we repeated the analyses previously reported in Table 3. However,

adding these variables did not result in much improvement, and most of the values actually

worsened, with the most notable exception being HAG2015_ph1—AAS correlation which

improved from q = .10 to q = .51 (p\ .001). Mendeley integrated mostly poorly into the

components, with loadings below .30 in four cases, including the combined data.

Specifically, the Mendeley loadings were: .274, .239, .687, .695, .260, .738, and .181,

respectively. CiteULike integrated slightly better, with its loadings being: .348, .264, .535,

.449, .439, .616, and .397, respectively. In an effort to improve the results, we did several

iterations of the PCAs, each time removing a different ‘problematic’ variable, starting from

the ones with negative loadings. After all the variables with negative loadings were

removed, Mendeley and CiteULike loadings increased above the .30 threshold in all the

groups. In this solution, however, only Blogs, Mendeley, and CiteULike variables

remained. This is shown in Table 6.

Unidimensionality seems to hold for every group. Note that there is a high level of

congruence between every group pair, with all the / values being well above the .95 cutoff

(e.g., the lowest / value is .97, for the HCG2015_ph2 vs. HAG2015_ph2 comparison and all

other coefficients are in .98–1.00 range). However, with the exception of HAG2016, internal

consistencies are well below the minimal cutoff (.70), and principal components explain

only around 50% of the variables’ variance. Correlations with the ‘raw’ AAS are mostly

moderate (Cohen 1992).

Taken together, these ad hoc tests suggest that it is technically possible to obtain a

congruent altmetric combination with the addition of Mendeley and CiteULike altmetric

counts, but that combination is not very satisfactory. It includes only three variables, it is

not very internally consistent, and it accounts for only moderate amounts of its variables’

variance.

Correlation between the composite altmetric scores and citations

Correlation between the AAS and components presented in Tables 3 and 6 with mean

citation counts are shown in Table 7. Correlations are calculated separately for all six

HCGs and HAGs and for the combined data.

Judging from the correlation values and their 95% confidence intervals (CIs) it is

obvious that there is little consistency in correlations between the groups. Values range

from trivial to large (Cohen 1992), and from negative to positive. There are several

Scientometrics

123

https://goo.gl/E2M05n


T
a

b
le

6
P

ri
n

ci
p
al

co
m

p
o

n
en

t
an

al
y
si

s
w

it
h

ad
d

ed
M

en
d
el

ey
an

d
C

it
eU

L
ik

e
(t

h
e

fi
n

al
it

er
at

io
n

)

V
ar

ia
b

le
s

L
o

ad
in

g
s

H
C

G
2
0
1
5
_
p
h
1

H
C

G
2
0
1
5
_
p
h
2

H
A

G
2
0
1
5
_
p
h
1

H
A

G
2
0
1
5
_
p
h
2

H
C

G
2
0
1
6

H
A

G
2
0
1
6

C
o

m
b
.

B
lo

g
s

.5
6

4
.4

7
6

.6
2

4
.7

7
8

.7
1

6
.7

7
6

.6
1

2

M
en

d
el

ey
.6

9
7

.7
6

6
.8

3
7

.6
9

6
.6

4
5

.8
4

2
.7

0
2

C
it

eU
L

ik
e

.7
7

7
.8

0
5

.8
0

0
.7

1
9

.7
7

7
.8

2
5

.8
3

3

N
u

m
b

er
o

f
co

m
p

o
n

en
ts

su
g

g
es

te
d

b
y

M
A

P
1

1
1

1
1

1
1

N
u

m
b

er
o

f
co

m
p

o
n

en
ts

su
g

g
es

te
d

b
y

P
A

1
1

1
1

1
1

1

E
x

p
la

in
ed

v
ar

ia
n

ce
4

6
.9

0
%

4
8

.6
9

%
5

7
.6

8
%

5
3

.5
4

%
5

1
.0

8
%

6
6

.4
3

%
5

2
.0

2
%

In
te

rn
al

co
n

si
st

en
cy

(x
)

.4
7

.5
1

.6
5

.5
7

.5
3

.7
5

.6
2

C
o

rr
el

at
io

n
w

it
h

th
e

A
A

S
(q

)
.5

5
*

*
*

[.
3

8
,

.6
9

]
.4

5
*

*
*

[.
2

4
,

.6
2

]
.4

9
*
*

*
[.

3
2

,
.6

4
]

.4
8

*
*

*
[.

3
1

,
.6

2
]

.6
6

*
*

*
[.

5
2

,
.7

8
]

.3
5

*
*

*
[.

1
4

,
.5

3
]

.4
6

*
*

*
[.

3
7

,
.5

5
]

H
C

G
2
0
1
5
_
p
h
1
=

h
ig

h
ly

ci
te

d
g

ro
u
p

fr
o
m

2
0
1
5
,

b
as

ed
o
n

d
at

a
fr

o
m

2
0
1
6
.

H
C

G
2
0
1
5
_
p
h
2
=

h
ig

h
ly

ci
te

d
g

ro
u

p
fr

o
m

2
0

1
5
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

7
.

H
A

G
2
0
1
5
_
p
h
1
=

h
ig

h
A

A
S

g
ro

u
p

fr
o

m
2

0
1

5
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

6
.

H
A

G
2
0
1
5
_
p
h
2
=

h
ig

h
A

A
S

g
ro

u
p

fr
o
m

2
0

1
5

,
b

as
ed

o
n

d
at

a
fr

o
m

2
0

1
7

.
H

C
G

2
0
1
6
=

h
ig

h
ly

ci
te

d
g

ro
u

p
fr

o
m

2
0

1
6
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

7
.

H
A

G
2
0
1
6
=

H
ig

h
A

A
S

g
ro

u
p

fr
o

m
2

0
1

6
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

7
.

C
o

m
b
.
=

C
o

m
b

in
ed

d
at

a
(N

=
3

8
7

ar
ti

cl
es

)
fo

r
th

e
n

o
n

-r
ep

ea
te

d
g

ro
u

p
s:

H
C

G
2
0
1
5
_
p
h
1
?

H
A

G
2
0
1
5
_
p
h
1
?

H
C

G
2
0
1
6
?

H
A

G
2
0
1
6
.

R
el

ia
b
il

it
y

o
f

in
te

rn
al

co
n
si

st
en

cy
is

m
ea

su
re

d
b
y

M
cD

o
n
al

d
’s

x
co

ef
fi

ci
en

t
(M

cD
o

n
al

d
1

9
9

9
;

Z
in

b
ar

g
et

al
.

2
0

0
5
).

q
=

S
p

ea
rm

an
’s

ra
n

k
co

rr
el

at
io

n
.
C

o
rr

el
at

io
n

s
o

f
th

e
co

m
p

o
n

en
t

sc
o

re
s

w
it

h
th

e
‘r

aw
’

A
A

S
v

al
u

es
w

as
ca

lc
u

la
te

d
w

it
h

th
e

A
A

S
’

o
f

th
e

sa
m

e
y

ea
r

(v
al

u
es

g
iv

en
in

[
]

ar
e

9
5

%
co

n
fi

d
en

ce
in

te
rv

al
s

o
f
q,

b
as

ed
o

n
5

0
0

0
b

o
o

ts
tr

ap
sa

m
p

le
s)

.
*

*
*
p
\

.0
0

1

Scientometrics

123



T
a

b
le

7
C

o
rr

el
at

io
n
s

o
f

th
e

A
A

S
an

d
al

tm
et

ri
c

co
m

p
o
n
en

ts
w

it
h

m
ea

n
ci

ta
ti

o
n
s

H
C

G
2
0
1
5
_
p
h
1

H
C

G
2
0
1
5
_
p
h
2

H
A

G
2
0
1
5
_
p
h
1

H
A

G
2
0
1
5
_
p
h
2

H
C

G
2
0
1
6

H
A

G
2
0
1
6

C
o
m

b
.

A
A

S
.0

5
[-

.1
6

,
.2

6
]

.1
0

[-
.1

2
,

.3
0

]
.2

5
[.

0
3

,
.4

5
]

.3
5

[.
1

3
,

.5
2

]
.1

6
[-

.0
4

,
.3

5
]

.3
0

[.
1

0
,

.4
8

]
-

.5
3

[-
.6

0
,
-

.4
5

]

T
ab

le
3

co
m

p
o

n
en

t
.0

9
[-

.1
2

,
.2

9
]

.0
9

[-
.1

3
,

.3
0

]
-

.1
8

[-
.3

6
,

.0
2

]
.4

1
[.

2
2

,
.5

8
]

.1
0

[-
.1

0
,

.2
8

]
.5

8
[.

4
2

,
.7

1
]

-
.4

7
[-

.5
4

,
-

.3
9

]

T
ab

le
6

co
m

p
o

n
en

t
.3

1
[.

1
3

,
.4

9
]

.3
1

[.
1

0
,

.4
9

]
-

.0
7

[-
.2

6
,

.1
3

]
.4

7
[.

2
9

,
.6

2
]

.0
3

[-
.1

7
,

.2
3

]
.6

2
[.

4
6

,
.7

5
]

-
.0

6
[-

.1
5

,
.0

4
]

H
C

G
2
0
1
5
_
p
h
1
=

h
ig

h
ly

ci
te

d
g

ro
u
p

fr
o
m

2
0
1
5
,

b
as

ed
o
n

d
at

a
fr

o
m

2
0
1
6
.

H
C

G
2
0
1
5
_
p
h
2
=

h
ig

h
ly

ci
te

d
g

ro
u

p
fr

o
m

2
0

1
5
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

7
.

H
A

G
2
0
1
5
_
p
h
1
=

h
ig

h
A

A
S

g
ro

u
p

fr
o

m
2

0
1

5
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

6
.

H
A

G
2
0
1
5
_
p
h
2
=

h
ig

h
A

A
S

g
ro

u
p

fr
o
m

2
0

1
5

,
b

as
ed

o
n

d
at

a
fr

o
m

2
0

1
7

.
H

C
G

2
0
1
6
=

h
ig

h
ly

ci
te

d
g

ro
u

p
fr

o
m

2
0

1
6
,

b
as

ed
o

n
d

at
a

fr
o

m
2

0
1

7
.

H
A

G
2
0
1
6
=

h
ig

h
A

A
S

g
ro

u
p

fr
o

m
2

0
1

6
,

b
as

ed
o

n
d

at
a

fr
o
m

2
0

1
7
.

C
o
m

b
.
=

C
o

m
b
in

ed
d

at
a

(N
=

3
8

7
ar

ti
cl

es
)

fo
r

th
e

n
o

n
-r

ep
ea

te
d

g
ro

u
p
s:

H
C

G
2
0
1
5
_
p
h
1
?

H
A

G
2
0
1
5
_
p
h
1
?

H
C

G
2
0
1
6
?

H
A

G
2
0
1
6
.

C
o
rr

el
at

io
n

s
ar

e
S

p
ea

rm
an

’s
ra

n
k

co
rr

el
at

io
n

(q
)

an
d

v
al

u
es

g
iv

en
in

[]
ar

e
9

5
%

co
n

fi
d

en
ce

in
te

rv
al

s
o

f
q

,
b

as
ed

o
n

5
0

0
0

b
o

o
ts

tr
ap

sa
m

p
le

s.
C

o
rr

el
at

io
n

s
ar

e
al

w
ay

s
ca

lc
u

la
te

d
w

it
h

th
e

co
rr

es
p

o
n

d
in

g
m

ea
n

ci
ta

ti
o

n
co

u
n

ts

Scientometrics

123



instances of CIs very noticeably not overlapping (which suggests significant differences in

correlation values) or overlapping very slightly. This occurs both between the groups, but

on the same altmetric measure (e.g., HAG2015_ph2 or HAG2016 vs. combined data for all

three altmetric composites/components), and within the groups, but on different altmetric

variables (e.g., correlation of the AAS with mean citations vs. correlation of the Table 3

component with mean citations, within the HAG2015_ph1).

The most important trend to point out is that correlations of altmetric measures with

mean citation counts within individual HCGs and HAGs are mostly positive, while, in

contrast, correlations for the combined data group are moderately to strongly negative

(Cohen 1992) for two out of three variables. Taking a closer look at the data patterns again

suggested a curvilinear nature of the associations. However, due to high concern for the

correlations being artifactual and misleading considering the non-congruence (Reise et al.

1993), we did not explore this issue any further at this point.2

Discussion

This research was conducted in order to examine if it is justified to group different alt-

metric measures into one composite score, as it is done in increasingly popular Altmet-

ric.com’s (Adie and Roe 2013) ‘Altmetric Attention Score’—AAS. Some critics raised

their concerns over such practice (and the AAS specifically) on a conceptual level, sug-

gesting that this approach carries the risk of becoming an altmetric version of the impact

factor (with accompanying potential for misuse) and that it likely simplifies the multidi-

mensional nature of the altmetric data with no good justification (Gumpenberger et al.

2016). To the best of our knowledge, our research is the first formal empirical examination

of this issue.

We conducted a series of analyses on the five most frequent AAS composites, i.e., on

the five key AAS altmetric indicators: News, Blogs, Facebook, Twitter, and Google?

counts. These analyses were done in order to answer two specific questions. First, is a

combination of these individual altmetrics functionally unidimensional—which is a nec-

essary condition if they are to be aggregated into a single composite score? Second, are the

altmetrics interrelated in a similar fashion across conditions, i.e., is their structure con-

gruent between different article groups—which is a necessary property if comparisons are

to be made based on their composite scores (Drasgow 1984; Meredith 1993; Reise et al.

1993)?

For the groups of highly cited articles (HCGs), five examined altmetric variables

grouped together strongly, reliably, and a unidimensional structure seems to be justified. In

other words, these five altmetric indicators can be aggregated into a single principal

component (composite score) without any substantial loss of variance or misrepresentation

of a nature of the data on these groups. Furthermore, the structures of all the HCGs’

component loadings are functionally equivalent according to Tucker’s congruence coef-

ficients—/ (Tucker 1951; Lorenzo-Seva and Ten Berge 2006), including an equivalence

over time. This means that HCGs’ scores can be safely compared among themselves.

However, this was not the case for the groups of articles with high AAS (HAGs), where the

individual altmetric variables seem to be very loosely, and even inversely interrelated, with

a lot of variance/information being lost when a single component was extracted.

2 In fact, even several examinations of differences between groups in the AAS and citations done at the
beginning of the Results is, strictly speaking, not justified due to later established incongruence.
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Furthermore, the structures of the HAGs’ principal components were mostly incongruent,

i.e., they differed substantially when compared among themselves (in every single com-

parison), when compared to the HCGs’ components (with only two comparison pairs being

exceptions), and when compared to the combined groups’ data (with one exception). Not

even the structures of the same HAG in two different time points were equivalent. Thus,

component scores from half of the examined conditions are empirically not suitable for

group comparison purpose.

For one of the HAG’s, correlation with its corresponding ‘raw’ AAS value, which

should supposedly represent the same general underlying structure, was only .10. This

illustrates how much of a discrepancy can exist between the ‘wrongly’ presupposed

structure, i.e., the ‘raw’ AAS, and the actual empirically observed structure, i.e., the

structure obtained by the principal component analysis. In this particular case, it was clear

that observed altmetric variables should not be forcefully combined together, as the AAS

does, because the data was clearly suggesting that there are two, inversely, rather than

positively related subcomponents.

One of the major sources of the incongruence between the components was a curvilinear

relationship between Twitter and News counts, which became obvious when the data was

combined. Curvilinearity likely explains why both bivariate correlations and loadings of

these variables were ‘flip-flopping’ between positive and negative values, depending on the

article group. This implies that an underlying structure of at least some of the altmetric data

is likely much more complex than a simple unidimensional configuration. Thus, it is

probably not wise to aggregate altmetric data into a single composite score, such as the

AAS, even if the unidimensonality and congruence assumptions appear to hold for a

particular article group—as the same might not be true across the board.

Most of our findings point to a conclusion that the AAS scores should not be calculated

and used for any kind of comparison purpose, at least until a reliable unidimensional,

congruent, and linear structure of a particular combination of individual altmetrics is

found. Such structure should also be confirmed on sufficiently large datasets and under

multiple conditions, including low, medium, and high values of altmetric counts. We made

a small ad hoc attempt to identify a congruent and reliable altmetric composite structure on

our data. However, this was not particularly successful, even when additional altmetrics,

namely Mendeley and CiteULike, which are controversially not included in the AAS

(Gumpenberger et al. 2016), were added to the pool of the examined variables. This

resulted only in Blogs, Mendeley and CiteULike variables congruently grouping together

for all the examined conditions/groups, but with only moderate amounts of explained

variance and fairly low internal consistencies.

We also briefly explored the associations of aggregated/composite altmetric data (i.e.,

the ‘raw’ AAS and two versions of the altmetric principal components) with citation

counts. While several correlations do seem to converge to previously reported value of .30,

obtained between the AAS and citations on a large sample of Economics and Business

Studies articles (Nuredini and Peters 2016), coefficients are generally ‘hectic’, varying

from positive to negative, in a trivial to large intensity magnitude (Cohen 1992). While

inconsistent correlations between aggregated altmetric values and citations are not in and

of itself a sign of incongruence (as group memberships can moderate correlations between

otherwise congruent measures), they do add up to a list of potential causes of concern

regarding the integrity and usability of the composite altmeric measures. This is especially

true since there were signs of altmetric—citations curvilinearity, which we did not explore

in detail, precisely due to high levels of previously determined incongruency, which does

render correlation patterns potentially artifactual and misleading (Reise et al. 1993). Thus,
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this issue should be reexamined if and when a congruent altmetric composite measure is

obtained.

Several criticisms can be raised regarding our conclusion that a unidimensional com-

posite altmetric measure, such as the AAS, should not be computed and used for com-

parison purposes. For example, we did not examine all the parts of the AAS specifically,

due to some individual altmetric variables having too low counts to be taken into con-

sideration. However, this does not invalidate the conclusion, as the five altmetrics that we

did consider are arguably the most important ones (and certainly the most popular, i.e., the

most frequently occurring ones). The fact that they do not seem to interrelate in a unidi-

mensional fashion, with signs of non-linearity, is enough to point to a problem.

There is also a potential concern related to our data gathering methodology. Articles that

we had selected in phase one of data collection were published during 2015, but the data

were collected in mid-2016 and again in mid-2017, while the data for articles published in

2016 were collected in mid-2017. This means that there was a delay of about 0.5-1.5 years

from articles’ publication to data collection (and twice that for the phase two data for 2015

articles). This delay, albeit arguably still short, was necessary in order to give the articles

enough time to receive a certain amount of citations. However, this also means that

altmetric data for the HAGs from 2015 and 2016 had the same delay, i.e., altmetric counts

that we have gathered are not the original counts based on which these articles were

initially ranked in their respective ‘[The] Altmetric Top 100’ lists, from which we selected

them. This, however, is not a severe limitation from the perspective of this study, given that

the only important selection requirement was that such articles, on average, have sub-

stantially higher altmetric counts in comparison to the HCG’s articles. Our research focus

was not on the individual altmetric mean values and their changes, but rather on mea-

surement invariance, i.e., on the consistency in the structure of relationships between

different altmetric variables when they are aggregated together. The mean values of arti-

cles have obviously changed from the time they were initially awarded their ‘Top 100’

status, but this is not important, as we wanted to study their congruence and not their means

specifically. As Drasgow (1984, p. 134) points out: ‘‘[…] in the definition of measurement

equivalence there is no requirement of equal means, variances, skewnesses, or kurtoses for

either the observed test scores or the latent trait. Measurement equivalence requires an

identical relation between test scores and the latent trait.’’ On a related note, we did not

specifically match the articles and groups based on the subject fields/disciplines, article

types, or anything along these lines. However, we argue that this is also largely irrelevant

in the context of our research problem. If the AAS (or any other aggregate/composite

altmetric measure, for that matter) is to be used as a basis for comparison of scientific

articles in general, it should have the same underlying structure regardless of the subject

fields, article types, etc. (and regardless of potential differences in altmetric means or

medians between groups of articles from different fields or of different types). Note that

under these same ‘unmatched’ conditions, the structure of citation data is perfectly con-

gruent, while the structure of altmetric data is not.

Another point of concern is the fact that the most problems were observed in the HAGs,

whose average altmetric values are by definition higher than those of HCGs, in which no

particular problems were observed, as both unidimensionality and congruence do seem to

hold. In other words, HAGs represent groups of mostly high-end values. While this is true

to an extent, the same can be stated for the HCGs with regards to citation counts from

different sources (WoS, Scopus, and Google Scholar), which we also examined mainly for

this precise reason. Note that differences in mean AAS—which favor HAGs, are virtually

of the same magnitude as are the differences in mean citations—which favor HCGs.
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However, there are no issues for citation variables, in either HCGs or HAGs, as unidi-

mensionality holds in every group, internal consistencies are high, and there is a high

congruence for every single group comparison, both within and between HCGs and HAGs.

This also includes congruence over time. Furthermore, when altmetic data of four groups

were combined, a reasonably representative range of low, middle, and high values was

obtained, which, in turn, enabled us to identify the additional curvilinearity issue described

earlier—none of which was observed for citation counts. Thus, under very similar con-

ditions, citation data aggregates very well, while altmetric data does not.

It is also important to clarify why we opted to focus on the ‘extreme’ groups. The reason

is multifaceted. Given a concern that the AAS might become misused ‘just like the impact

factor’ (Gumpenberger et al. 2016), it is likely going to be used to compare the top articles,

researchers, institutions, etc., i.e., to differentiate ‘good from the best’. This is, essentially,

what ‘The Altmetric Top 100’ does right now, on an article level. Comparisons of articles

based on altmetrics and ‘traditional citations’ are also intuitively attractive, as ‘new school

versus old school’ comparisons arguably often are. In such cases, groups with high alt-

metric counts are likely to be put against groups with high citation counts. Therefore, we

argue that it is very important for measurement invariance to be present in such ‘extreme’

cases. Also, given that ‘The Altmetric Top 100’ lists are publicly available, they make a

good basis for the follow-up comparisons by other researchers.

Concluding recommendations

Naturally, our findings should necessarily be replicated and extended, ideally using much

larger data sets, more groups and time points, which should all become feasible reasonably

soon, as time passes and further data accumulates. However, based on our current findings,

we would caution against the usage of the AAS for any group comparisons, including both

research and practical purposes (such as policy and decision making). We also extend our

warning to any other aggregate/composite altmeric measures for which the issue of

measurement invariance is not successfully solved. Measurement invariance appears to be

too big of a problem to allow for the composites of currently most popular altmetrics to be

safely used for any consequential purpose. The underlying pattern of associations between

these individual altmetrics is likely too complex, too inconsistent, and too unreliable across

different conditions to justify them being aggregated into a coherent single score. If this

issue is ignored, and comparisons based on composite altmetric measures are conducted

nevertheless—such comparisons would likely have no actual meaning. Until such time

when the measurement invariance issue is hopefully solved (i.e., some reliable and con-

gruent linear unidimensional altmetric composite structure is found) it is safer to rely upon

individual altmetrics instead of their ad hoc composites. Furthermore, we would appeal to

Altmetric.com to consider and address our and other constructive criticisms (e.g.,

Gumpenberger et al. 2016) and try and re(de)fine the idea behind the AAS, as it arguably

still has a potential worth exploring.
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